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This paper seeks to observe the number of primitive Pythagorean triples bounded by a positive real num-
ber B and its behavior as B grows larger. I will generally follow the proof from the text, A Pythagorean
Introduction to Number Theory by Professor Ramin Takloo-Bighash, with some proofs coming from Pro-
fessor Elena Fuchs’s number theory course MAT 115B. In particular, I will be counting the number of
elements in the set

S(B) = {(a, b, c) ∈ Z3 : a2 + b2 = c2; gcd(a, b, c) = 1; a, b, c ≤ B}.

The main theorem of this paper is Theorem 8. For ease of notation, I denote N (B) = #S(B).

1 Setting Up for Counting

Definition 1. A triple (a, b, c) ∈ Z3 is a primitive Pythagorean triple if a2+ b2 = c2 and gcd(a, b, c) = 1.

I first want to characterize the primitive Pythagorean triples.

Theorem 2. There exists infinitely many primitive Pythagorean triples (a, b, c) where b is even. Fur-
thermore, they are given by equations:

a = x2 − y2, b = 2xy, c = x2 + y2

where x, y ∈ Z, gcd(x, y) = 1 and exactly one of x or y is even.

The proof of this is omitted as the proof did not align with the story I wanted to paint through this
paper.1 However, intuitively see that this is true because you can check for validity by computation, and
for primitivity and completeness by contradiction. Note that the pairs x, y and −x,−y result in the same
triple as the negatives cancel out. This will be important later on.

From Theorem 2, we have that if (a, b, c) ∈ S(B) with c > 0, then there exists coprime integers x and
y, where exactly one of x or y is even such that a = x2 − y2, b = 2xy, and c = x2 + y2. Note that I
am assuming that b is the even term. Note that we also know |a|, |b| ≤ |c| so we just need to bound
|c| = c = x2+y2 ≤ B. I would like to emphasize that constructing the triples in this way results in triples
with a positive c. However we also want to count triples with negative c, so we will need to multiply a
factor of 2 later on.

Now, something that is slightly easier to count is

h(B) = #{(x, y) ∈ Z2 : exactly one of x or y even, gcd(x, y) = 1, x2 + y2 ≤ B}.

See that N (B) = 2 · 2 · 1
2 · h(B) where the first factor of two comes from switching a and b, the second

factor of 2 comes from including negative c’s as we assumed earlier that c > 0, and finally the 1
2 factor

comes from dividing out (−x,−y)2.

To make this even easier to count, we relax the conditions a bit by removing primality. Consider this
new function:

h̃(B) = #{(x, y) ∈ Z2 : exactly one of x or y even, x2 + y2 ≤ B}.

Our next goal is to be able to count this function h̃(B). Notice that the pairs (x, y) being counted in
h̃(B) approximately correspond to half the number of lattice points in a circle as B → ∞.

1I also ran out of space, this is so Fermat-core.
2Recall that (x, y) and (−x,−y) get us the same a, b, c.
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2 Counting Lattice Points in a Circle

To count h̃(B), see that matching a length
√
2

square to each integral point with one even, one
odd coordinate allows us to associate the number
of integral points within the circle with the area of
the circle of radius

√
B.

However, note that not every
√
2 square will be

contained within this circle of radius
√
B. This

can be dealt with, however. Note that the diago-
nal of each of these squares is 2, so each integral
point assigned to that

√
2 square strays from the

circle by at most 2. Finally, see that the area of
each

√
2 square is 2, so we need to divide that out

from the area of the circle. Fig. 1. The diagram for
√
B = 5

Thus, we have that

π

2
(
√
B − 2)2 ≤ h̃(B) ≤ π

2
(
√
B + 2)2

and writing this asymptotically, or in big O notation, we have that:

Lemma 3. As B → ∞,

h̃(B) =
π

2
B +O(

√
B).

Now that we have an asymptotic formula for h̃, our next goal is to be able to express h in terms of h̃.

3 Möbius Inversion

See that if x2 + y2 ≤ B is a non-zero integral point, we can “make” them coprime by mapping it to
( x
gcd(x,y) )

2 + ( y
gcd(x,y) )

2 ≤ B
gcd(x,y)2 . Also note that since exactly one of x or y is odd, we have that

gcd(x, y) is odd as well. Thus, we can establish a bijection between the set

{(x, y) ∈ Z2 : exactly one of x or y odd, x2 + y2 ≤ B}

and the disjoint set union⊔
δ2≤B
δ odd

{(x, y) ∈ Z2 : exactly one of x or y odd, gcd(x, y) = 1, x2 + y2 ≤ B

δ2
}.

Since we are union-ing over disjoint sets, we can just add up the cardinality of each set. Thus we have,

h̃(B) =
∑
δ2≤B
δ odd

h

(
B

δ2

)

Now, we want to be able to express h in terms of h̃. To help us do this, I present a well-known “tool”,
the Möbius function µ, and then show some of its properties.

The Möbius function, denoted µ, was first introduced by August Ferdinand Möbius in 1832. For input
of n = pr11 . . . prkk ,3 µ is defined as follows:

µ(n) =


1 if n = 1

(−1)k if ri = 1,∀i
0 otherwise

3This is the prime factorization of n.
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Proposition 4. µ is multiplicative.4

Proof. Let m,n ∈ Z such that gcd(m,n) = 1. I want to write m,n in their prime factorizations,
m = pr11 . . . prkk and n = qs11 . . . qsℓℓ .

Note that gcd(m,n) = 1 implies that pi ̸= qj for all pairs (i, j). See that if at least one of m or n has an
exponent ri or si > 0, then everything zeroes out.

In the square-free case, first note that if p is a prime, µ(p) = −1. Then, we have that

µ(mn) = µ(p1 . . . pk · q1 · · · qk) = (−1)k+ℓ = (−1)k(−1)ℓ = µ(m)µ(n).

Proposition 5. Let F (n) =
∑

d|n,d≥1 µ(d). Then,

F (n) =

{
1 if x =1

0 otherwise.

Proof. First, note that if we plug in 1 into F , we get F (1) = 1.

Next, see that F is multiplicative since µ is multiplicative. Let gcd(m,n) = 1. Then,

F (mn) =
∑
d1|m
d2|n

µ(d1d2) =
∑
d1|m
d2|n

µ(d1)µ(d2) =

∑
d1|m

µ(d1)

∑
d2|n

µ(d2)

 = F (m)F (n).5

Now we plug in prime powers.

F (pk) =
∑
d|pk

d≥1

µ(d) =

k∑
i=0

µ(pi) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pk)︸ ︷︷ ︸
0

= 1 + (−1) = 0

Thus, for generic n ̸= 1, n = pr11 . . . prkk then, F (n) = F (pr11 ) . . . F (prkk ) = 0.

Now we are ready to prove the following lemma, which will help us

Lemma 6. Takloo-Bighash (2018) Suppose functions F : R>0 → R>0 and G : R>0 → R>0, for all B > 0,
satisfy F (B) =

∑
δ2≤B
δ odd

G
(
B
δ2

)
. Then,

G(B) =
∑
δ2≤B
δ odd

F

(
B

δ2

)
µ(δ)

Proof. Let functions F : R>0 → R>0 and G : R>0 → R>0, for all B > 0, satisfy F (B) =
∑

δ2≤B
δ odd

G
(
B
δ2

)
.

Then, consider g(B) =
∑

δ2≤B
δ odd

F
(
B
δ2

)
µ(δ). See that

g(B) =
∑
δ2≤B
δ odd

F

(
B

δ2

)
µ(δ)

(2)
=

∑
δ2≤B
δ odd

µ(δ)
∑

η2≤ B
δ2

η odd

G

(
B/δ2

η2

)
=

∑
δ2≤B
δ odd

∑
η2δ2≤B
η odd

G

(
B

η2δ2

)
µ(δ)

(4)
=

∑
n2≤B
n odd

∑
d|n

G

(
B

n2

)
µ
(n
d

)
(5)
=

∑
n2≤B
n odd

G

(
B

n2

) ∑
d|n

µ (d)

︸ ︷︷ ︸
=0

if n = 0 (Prop. 5)

(6)
= G(B)

Note that we get (2) from assumption, (4) by setting n = ηδ and rearranging terms, (5) since {d|n} =
{n
d : d|n}, and (6) since by Proposition 5., n ̸= 1 zeroes out, leaving only G(B) in the summation.

Remark 7. This Lemma holds if we remove the oddness constraint, using the same argument.
4Note that µ is just multiplicative, and not completely multiplicative.
5Note that this argument can be used more generally for any multiplicative function, and not just µ.
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4 Combining Everything

From Lemma 3. and Lemma 6. we have

h(B) =
∑
δ2≤B
δ odd

h̃

(
B

δ2

)
µ(δ) =

∑
δ2≤B
δ odd

(
π

2
· B
δ2

+O(
√
B/δ2)

)
µ(δ) =

π

2
B

∑
δ2≤B
δ odd

µ(δ)

δ2
+O

√
B

∑
δ2≤B

1

δ


Note that we can replace µ(δ) with O(1) in the last summation since the one function upper bounds µ
(we use this trick again). Continuing, we have,

=
π

2
B

∞∑
δ=1
δ odd

µ(δ)

δ2
− π

2
B

∞∑
δ2>B
δ odd

µ(δ)

δ2
+O

√
B

∑
δ2≤B

1

δ

 =
π

2
B

∞∑
δ=1
δ odd

µ(δ)

δ2
+O

B

∞∑
δ2>B

1

δ2

+O

√
B

∑
δ2≤B

1

δ

 .

Breaking down the last formula, intuitively observe that the sum in the first term is convergent by
comparison with the series

∑
n≥1

1
n2 . We call this sum C2, and derive it at the very end.

See that for the second term, ∑
δ2>B

1

δ2
≤

∫ ∞

√
B

1

t2
dt ≪ 1√

B

and for the third term, ∑
δ2≤B

1

δ
≤

∫ √
B

1

1

t
dt ≪ logB.

Thus, we currently have,

h(B) =
π

2
C2 ·B +O(

√
B) +O(

√
B logB) =

π

2
C2B +O(

√
B logB).

4.1 Computing C2

Recall from your calculus class that the series
∑

n=1
1
n2 converges absolutely, so it makes sense to compare

C2 to this series. We claim that
3

4
C2 ·

∑
n=1

1

n2
= 16.

Proof. Recall that C2 =
∞∑
δ=1
δ odd

µ(δ)
δ2 . We want to get rid of this “oddness” constraint. An intuitive way to

do this is to take the sum of all δ regardless of parity, then subtracting out the sum of δs of even parity.

Thus, we get that

∞∑
n=1

µ(n)

n2
=

∞∑
δ=1
δ odd

µ(δ)

δ2
+

∞∑
δ=1

δ even

µ(δ)

δ2
(2)
= C2 +

∞∑
δ=1
δ odd

µ(2δ)

22δ2
(3)
= C2 +

µ(2)

4

∞∑
δ=1
δ odd

µ(δ)

δ2
= C2 −

1

4
C2.

In the second equality (2), you might be concerned that we “missed” some evens that have more than
one power of 2 in its prime factorization. But note that by definition of the Möbius function µ, any input
that has a prime square in its prime factorization will zero out. Also note that in the third equality (3)
we can factor out the µ(2) because gcd(2, δ) = 1 when δ is odd and µ is multiplicative. Then,

3

4
C2

∑
m=1

1

m2
=

∞∑
n=1

µ(n)

n2

∞∑
m=1

1

m2
=

∞∑
n=1

∞∑
m=1

µ(n)

n2m2
=

∞∑
δ=1

∞∑
mn=δ

µ(n)

n2m2

=

∞∑
δ=1

1

δ2

∞∑
mn=δ

µ(n) =

∞∑
δ=1

1

δ2

∞∑
n|δ

µ(n) = 1.

6Note that the text I am referencing proves a more general result.
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By Proposition 5, note that
∑∞

n|δ µ(n) = 0 unless δ = 1, so the only term that survives is δ = 1, getting
us that the entire terms equals to 1.

Now it remains to find the constant
∑

n=1
1
n2 . This problem, known as the Basel Problem, was solved by

Euler in 1735, and this value is known to be
∑

n=1
1
n2 = π2

6 . I omit the proof as the result is well-known
and the proof is not specific to this problem.

Thus, we get that C2 = 8
π2 .

4.2 Asymptotic Formula for Primitive Pythagorean Triples

Recall that by plugging in C2, we now have

h(B) =
4

π
B +O(

√
B logB).

Finally, plugging in h(B) = N1(B) into the original equation N (B), we have

Theorem 8. Takloo-Bighash (2018) As B → ∞,

N (B) = 2 · h(B) =
8

π
B +O(

√
B logB).

Remark 9. As of when I am writing this paper, the text has a coefficient of 4
π instead of 8

π , but I believe
that 8

π is the correct coefficient, and that 4
π is a result of arithmetic error. In addition, this result with

a coefficient of 8
π matches Lehmer’s corollary from 1900, which is in support of my claim that 8

π is the
correct coefficient..

Corollary 10. Lehmer (1900). As B → ∞, the number of primitive right triangles with hypotenuse
bounded by B is

1

2π
B +O(

√
B logB).

Note that we count primitive Pythagorean triples, both positive and negative, and we also count both
a2 + b2 = c2 and b2 + a2 = c2 as separate triples. When counting the primitive right triangles, Lehmer
fixes one of the sides to be even, in other words, does not distinguish between the triples a2 + b2 = c2

and b2 + a2 = c2. Finally, triangles cannot have negative length sides, so we must divide those out. See
that there are three variables that can be negative, and we also divide out another factor of 2 for the
swapping of a and b, getting us that from our derivation of N , the number of primitive right triangles is
1
24N (B) = 1

2πB +O(
√
B logB) as B → ∞ as desired.

Reflection. Overall I think that I understand the argument pretty well. Since I like counting, all of the
counting arguments made sense to me, and the Möbius function part of the proof made sense to me since
we walked through a similar proof during class. I was already comfortable with the use of asymptotics
and big-O notation from my computer science classes. The one part of the proof that I am not the most
comfortable with is the Basel Problem proof because I decided not to focus on it and the proof was not
as attractive to me than the other ones. I omitted the proof for theorem 1 because we did it in class and
it is lengthy. In general I feel pretty confident in my understanding of the chapter, especially because I
went through all of the counting and calculations for why I was getting 8

π instead of 4
π . I think it also

helped that I counted the lattice points slightly differently, proved Lemma 6 but without the oddness
constraint (not in this paper), and counted the PPTs using our (MAT 115B’s) characterization of them
instead of the textbook’s (they used odd x, y). My favorite part of the proof is section 3, where we deal
with the primitivity which is hard to count using Möbius Inversion. I think it was also great that I chose
to read the textbook as I found it extremely intuitive and easy to read and understand. I think I learned
a lot from this experience.
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